解剖生理学

ムービータイトル	サムネイル	サマリー	教科書該当箇所
A C 21170	. 244170	3(9	차기티어그리기
医療従事者をめざす、 あしたの君へ (3分11秒) ◀ ル)	and which the general s.	2010年にノーベル化学賞を受賞した、 北海道大学名誉教授・鈴木章先生による医 療従事者を志す人たちへ向けたメッセージ	■ 1 解剖学, 生理学とは
細胞膜のはたらき (1分22秒) ◀ 〃)	細胞外 リンパネグライ 一番が かかず 大きれば 細胞内	細胞膜には選択透過性があり、脂溶性の高い物質などが透過しやすい、膜タンパク質分子は水やイオンなどを必要に応じて通過させている.	1 章 細胞と組織ー身体を構成するしくみ ■ 1 細胞 2 細胞の機能
ナトリウムポンプ (1分22秒) ◀ ᅦ)	1つのATPで3つのNo+をくみ出す	ナトリウムポンプでは、ATP を消費し、 細胞内外の濃度勾配に逆らってナトリウム の吸収とカリウムの排泄を行う「能動輸送」 を行っている.	1章 細胞と組織−身体を構成するしくみ ■1 細胞 2 細胞の機能
DNA の複製 (1 分 8 秒) ◀ ッ)	DHAKY X7-E	ポリメラーゼの働きにより一本鎖 DNA を	1 章 細胞と組織ー身体を構成するしくみ ■ 1 細胞 2 細胞の機能
脊椎の構造 (1分15秒) → √)	人体は背骨、骨盤などによって支えられています。	脊椎には椎孔と呼ばれる孔があり、そこには神経である脊髄が通っている、脊髄が損傷されるとさまざまな麻痺が起きる、脊椎はヒトの体を支えるとともに、脊髄を保護している。	2章 骨格・筋系-身体を支える・動かす しくみ ■2 頭蓋, 体幹の骨格 2 脊柱 8章 神経系-情報を収集して判断し, 伝達するしくみ ■3 中枢神経系 5 脊髄
肘関節の動き (1分12秒) 承 ()	上院件————————————————————————————————————	肘関節は,上腕骨,橈骨,尺骨から構成され,腕尺関節,腕橈関節,上橈尺関節の3 関節からなる.基本的な運動は屈曲と伸展 である.	
肩関節の動き (1分12秒) ➡️()	HERE UNDERVISERED	肩関節は球関節に区分され,多軸性である. あらゆる方向に動きやすい構造となってい る反面,安定性が悪く,脱臼しやすい関節 でもある.	

ムービータイトル	サムネイル	サマリー	教科書該当箇所
関節の運動 (4分19秒) 【 〃)	7/6 //6	主な関節の運動を、覚えやすいよう実際の動きとともにポイント解説する、解説の後は、間違いやすい運動を出題、解きながら覚えられる。	2章 骨格・筋系-身体を支える・動かす しくみ ■4 関節の構造と種類 3 関節の運動
骨格筋と筋原線維 (1分35秒) 【 〃)	THE PARTY NAMES OF THE PARTY OF	筋肉は筋細胞の集まりであり,筋細胞は無数の筋原線維より構成される.アクチン,ミオシンなどの作用により,筋原線維が収縮・弛緩し,関節運動が可能となる.33	■ 6 筋の種類
脾臓の構造と機能 (59秒) 【 〃)	映版 映版 映版 映版 映版 映版 映版 映版	脾臓は左肋骨に接するように位置し,血液 やリンパ球の貯蔵・破壊に関与している.	3章 血液・循環器系−物質を運搬するしくみ ■2 血球とその機能 1 赤血球
血液の凝固と線溶 (1分48秒) 【 リ)	(東京) → 東京 (東京) マロ (東京) マロトロンセン アロトロンセン アロトロンセン アロトロンセン アロトロンセン アロトロンセン アロアン アイブリン生成 第 18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	:	3章 血液・循環器系−物質を運搬するしくみ ■2 血球とその機能 3 血小板と血液凝固および血栓の線溶
刺激伝導系 (1分53秒) 【 リ)	SECOND SE	心臓は血液を全身に送り出すポンプである. 洞房結節は心臓のベースメーカーとして周期的に刺激を生成する. その刺激を刺激伝導系を介して心臓全体に伝えることによって, 心臓全体として調和がとれたリズムで収縮拡張を繰り返している.	くみ ■4 心臓
呼吸と嚥下 (48秒) <mark>}∤</mark> ()	## ## ## ## ## ## ## ## ## ## ## ## ##	口腔から咽頭までの間は、呼吸のためのはたらきと摂食・嚥下のためのはたらきの両方の機能を有している、呼吸と嚥下、それぞれの動きを理解しよう.	4章 呼吸器系-酸素を取り入れて、二酸 化炭素を排出するしくみ ■ 2 気道の構造と機能 2 咽頭 7章 消化器系-食物を摂取して消化・吸収し排泄するしくみ ■ 3 嚥下 2 咽頭の働き
呼吸のプロセス (3分46秒)	**************************************	呼吸のプロセスに必要な①換気、②外呼吸、 ③ガスの運搬、④内呼吸を酸素・二酸化炭 素の流れとともに詳しく解説する.	4章 呼吸器系−酸素を取り入れて,二酸 化炭素を排出するしくみ ■5 呼吸のプロセス

ムービータイトル	サムネイル	サマリー	教科書該当箇所
呼吸と横隔膜 (15秒) ★ ②)	TO THE PARTY OF TH	横隔膜と肋間筋が同期して収縮すると、胸壁が広がって胸腔の前後径が増大し、横隔膜は下方に動いて胸腔が上下に広がるため、胸腔の容積が増す、安静時と吸気時の肺と横隔膜の動きに注目.	4章 呼吸器系−酸素を取り入れて,二酸化炭素を排出するしくみ ■5 呼吸のプロセス 1 換気
膠質浸透圧 (3分20秒) ◀ 〃)	の数 できまり の数 でありか出 の形式 でありか出 の形式	はじめに基本として浸透圧とは何かを押さえた上で、体内に置き換えて、血漿・間質液を行き来する水の動きとともに、膠質浸透圧、静水圧について解説する.	5章 体液−体内の水分を調節するしくみ ■1 体液の調節 2 浸透圧
濾過と再吸収のしくみ (1分47秒) 【 小)	関制能から→ 糸球体 の	泌尿器は腎臓・尿管・膀胱により構成され, 腎臓は老廃物の濾過と再吸収に重要な器官 である.尿は糸球体を経由して 99%が再 吸収される.	6章 泌尿器系-尿を作るしくみ
腎臓の働きと腎不全に 関する基礎知識 (2分54秒)	OBJECT AND	腎臓の四つの働き(体液の恒常性の維持, 血圧の調節, エリスロポエチンの産生, ビタミン D の活性化)について解説する。 前2者が障害された場合は透析治療で解 決でき,後2者に対しては製剤の投与が 治療法となる。	6章 泌尿器系−尿を作るしくみ ■1 腎臓 1 腎臓の構造
通路としての消化管 (1分38秒) ◀ 小)		口腔内から消化管へ取り込まれた食物は、 食道を経由して胃で消化される. そこで粥 状になった食物は十二指腸を通り小腸で吸 収される. 吸収されなかった残渣は大腸で 大腸菌などに分解され再吸収される.	7章 消化器系-食物を摂取して消化・吸収し排泄するしくみ ■3 嚥下 1 咽頭の構造
食道・胃・十二指腸 (4分39秒) ◀ √)	17 13 18 18 18 18 18 18 18 18 18 18 18 18 18	内視鏡の視点から,食道の動きや胃の構造・ 働きを見る.	7章 消化器系−食物を摂取して消化・吸 収し排泄するしくみ ■4 消化
胃の構造 (1分32秒)	die obs	胃は横隔膜の左下に位置し、胃酸などの消化液を分泌して、食物の消化を行う、それには主細胞から分泌されるペプシノゲンや G 細胞から分泌されるガストリンが関与する.	7章 消化器系−食物を摂取して消化・吸収し排泄するしくみ ■ 4 消化 1 胃の構造

ムービータイトル	サムネイル	サマリー	教科書該当箇所
小腸の構造 (1分6秒) ■ ル)	Mを ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	小腸は直径3〜4cm,長さ6〜7mの管状の消化器で,食物の大部分はここで吸収される.表面は絨毛で埋め尽くされ,吸収のための面積を広く取っている.	:
興奮情報の伝導 (1分25秒) ■ 1)	Naサチャネル まる まる まる まる まる ままる ままる ままる ままる ままる ままる	ニューロンの働きは別の部位に情報を速やかに伝えることである. ニューロンが刺激されると電位差が生じ, 情報が次々と伝わっていく.	:
脳の解剖 (2分5秒) ➡️)		脳は大きく大脳、間脳、脳幹、小脳で構成され、脊髄と合わせて中枢神経と呼ばれる. それぞれが重要な機能をもっている.	8章 神経系-情報を収集して判断し、伝達するしくみ ■3 中枢神経系 1 大脳
視覚の遠近調節 (1分25秒) 【 ハ)	チン小帯が練む	眼球のレンズの役割をする水晶体は、チン 小帯の張力により厚みが変化し、遠近調節 が行われる.	9章 感覚器系-外部から情報を取り入れ るしくみ ■2 視覚 6 眼の反射と調節機能
聴覚伝導路のしくみ (1分34秒) 【 ッ)	エルサイト アクタリファオ アフスタ リカリ リカリ リカリ リカリ リカリ リカリ リカリ リカリ リカリ リカ	聴覚器は外耳,中耳,内耳より構成されて おり,外耳は耳介と外耳道,中耳・内耳は 鼓膜・耳小骨・蝸牛などで構成されている.	9章 感覚器系-外部から情報を取り入れ るしくみ ■3 聴覚と平衡覚 2 聴覚器の構造と機能
平衡覚伝導路のしくみ (1分21秒) ◀ ∜)	平衡数 年前 年前 平衡电	にある平衡砂・平衡膜・平衡毛の動きによ	9章 感覚器系−外部から情報を取り入れ るしくみ ■3 聴覚と平衡覚 3 平衡覚器の構造と機能
皮膚の解剖生理 (3分3秒) ■ハ)	東京 東京 東京 東下記職	表皮の大部分を占める角化細胞が最下層で分裂し,成熟しながら上方の層へ移行していく皮膚のターンオーバーの動きを紹介する.	:

ムービータイトル	サムネイル	サマリー	教科書該当箇所
褥瘡処置の手順 (2分27秒) ◀ ハ)		在宅療養の場面において,褥瘡処置の手順 を紹介する.	10章 皮膚と膜・免疫系/体温調節-生 体を守るしくみ ■1 膜 2 皮膚
自然免疫系から 獲得免疫系へ (1分31秒)	DESCRIPTION OF STATE	病原体が体内に侵入することで起こるさま ざまな免疫反応、自然免疫系から獲得免疫 系へ,一連の流れを説明する.	10章 皮膚と膜・免疫系/体温調節-生体を守るしくみ ■4 自然免疫系のしくみと獲得免疫系との関連 2 自然免疫系から獲得免疫系への情報伝達
熱放散 (4分) ◀ 叭	Super Control of the	熱放散が生じている日常場面を例に,身体の中で産生された熱がどのように環境へ放散されるかをアニメーションで解説する.	10章 皮膚と膜・免疫系/体温調節-生体を守るしくみ ■7 体熱産生と体温 2 熱の出納
甲状腺・上皮小体 (副甲状腺) (1分18秒) ◀ ⅓)	甲狀物	甲状腺は甲状軟骨の下に位置する蝶形の器官で、甲状腺ホルモンを合成・分泌している、甲状腺の機能が高まると甲状腺ホルモンが血管内に分泌される.	くみ
妊娠初期の発達 (9分53秒) ◀ 小)	A second state of the seco	妊娠 4 週から 16 週までの胎児の発達を時系列で解説したエコー画像. 胎嚢が胎芽になり、心拍が確認され、胎児へと成長していく過程がわかる. 出典:増崎英明. 動画で学べる産科超音波 1 妊婦健診編. 付属 DVD Chapter 7 妊娠初期の発達.	12章 生殖器系−子孫を残すしくみ ■ 1 女性生殖器 5 妊娠と出産

付録「3D 人体映像」

サムネイル	ムービータイトル	教科書該当箇所
	骨格系 ★ ②	2章 骨格・筋系−身体を支える・動かす しくみ ■ 1 骨と骨格 1 骨の働き
	胸郭と臓器 柔 ∅	2章 骨格・筋系-身体を支える・動かす しくみ ■2 頭蓋, 体幹の骨格 3 胸郭 3章 血液・循環器系-物質を運搬するし くみ ■4 心臓 1 心臓の構造
	心臓 → ◇)	3章 血液・循環器系−物質を運搬するし くみ 3章 血液・循環器系−物質を運搬するし くみ ■ 4 心臓 1 心臓の構造
	肺 → 0)	4章 呼吸器系−酸素を取り入れて,二酸 化炭素を排出するしくみ
	泌尿器・生殖器 → √)	6章 泌尿器系-尿をつくるしくみ 12章 生殖器系-子孫を残すしくみ
	消化器系 ★ ()	7章 消化器系-食物を摂取して消化・吸 収し排泄するしくみ
	脳神経 ★②	8章 神経系-情報を収集して判断し,伝 達するしくみ
NAVYARMET C CHRORISTIC ROUB 617353AZZ LUBERGOCKUBROAS	眼球の動きと神経支配 ★ ()	9章 感覚器系−外部から情報を取り入れ るしくみ ■2 視覚 3 外眼筋
100	内分泌系 → Ø)	11章 内分泌系-内部の環境を整えるし くみ